
Code injection

Code Injection: Main idea
void func(char *arg1)
{
 char buffer[4];
 sprintf(buffer, arg1);
 ...
}

&arg1%eip%ebp00 00 00 00

buffer

(1) Load my own code into memory

Haxx0r c0d3Text

%eip

(2) Somehow get %eip to point to it

... …

Challenge 1

• It must be the machine code instructions (i.e.,
already compiled and ready to run)

• We have to be careful in how we construct it:
• It can’t contain any all-zero bytes

- Otherwise, sprintf / gets / scanf / … will stop copying
- How could you write assembly to never contain a full zero byte?

• It can’t use the loader (we’re injecting)

Loading code into memory

What code to run?
• Goal: general-purpose shell

• Command-line prompt that gives attacker general
access to the system

• The code to launch a shell is called shellcode

Shellcode
#include <stdio.h>
int main() {
 char *name[2];
 name[0] = “/bin/sh”;
 name[1] = NULL;
 execve(name[0], name, NULL);
}

xorl %eax, %eax
pushl %eax
pushl $0x68732f2f
pushl $0x6e69622f
movl %esp,%ebx
pushl %eax
...

As
se

m
bl

y

“\x31\xc0”
“\x50”
“\x68””//sh”
“\x68””/bin”
“\x89\xe3”
“\x50”
...

M
achine code

(Part of)
your
input

• We can’t insert a “jump into my code” instruction

• We don’t know precisely where our code is

&arg1%eip%ebp00 00 00 00

buffer

Text

%eip

... … \x0f \x3c \x2f ...

Challenge 2
Getting injected code to run

Memory layout summary
Calling function:
1.Push arguments onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you
want run after control returns to you

3.Jump to the function’s address

Called function:
4.Push the old frame pointer onto the stack (%ebp)
5.Set frame pointer (%ebp) to where the end of the stack is right now
(%esp)

6.Push local variables onto the stack

Returning function:
7.Reset the previous stack frame: %esp = %ebp, %ebp = (%ebp)
8.Jump back to return address: %eip = 4(%esp)

Calling function:
1.Push arguments onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you
want run after control returns to you

3.Jump to the function’s address

Called function:
4.Push the old frame pointer onto the stack (%ebp)
5.Set frame pointer (%ebp) to where the end of the stack is right now
(%esp)

6.Push local variables onto the stack

Returning function:
7.Reset the previous stack frame: %esp = %ebp, %ebp = (%ebp)

Recall

Hijacking the saved %eip

&arg1%eip%ebp00 00 00 00

buffer

Text

%eip

...

0xbff

0xbff

But how do we know the address?

%ebp

… \x0f \x3c \x2f ...

Hijacking the saved %eip

&arg1%eip%ebp00 00 00 00

buffer

Text

%eip

...

0xbff

0xbff

%ebp

…

What if we are wrong?

0xbdf

This is most likely data,
so the CPU will panic
(Invalid Instruction)

\x0f \x3c \x2f ...

• If we don’t have access to the code, we don’t know
how far the buffer is from the saved %ebp

• One approach: just try a lot of different values!
• Worst case scenario: it’s a 32 (or 64) bit memory

space, which means 232 (264) possible answers

• Without address randomization (discussed later):
• The stack always starts from the same fixed address
• The stack will grow, but usually it doesn’t grow very

deeply (unless the code is heavily recursive)

Challenge 3
Finding the return address

Improving our chances: nop sleds

&arg1%eip%ebp00 00 00 00

buffer

Text

%eip

...

0xbff

0xbff

%ebp

…0xbdf nop nop nop …

nop is a single-byte instruction
(just moves to the next instruction)

Now we improve our chances  
of guessing by a factor of #nops

Jumping anywhere
here will work

\x0f \x3c \x2f ...

Putting it all together

&arg1%eip%ebp00 00 00 00

buffer

\x0f \x3c \x2f ...Text

%eip

... 0xbff …0xbdf nop nop nop …

nop sled

padding good 
guess

malicious code

But it has to be something; 
we have to start writing wherever  

the input to gets/etc. begins.

